Eigenvalue bifurcation for odd gradient operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“odd” Matrices and Eigenvalue Accuracy

A definition of even and odd matrices is given, and some of their elementary properties stated. The basic result is that if λ is an eigenvalue of an odd matrix, then so is −λ. Starting from this, there is a consideration of some ways of using odd matrices to test the order of accuracy of eigenvalue routines. 1. Definitions and some elementary properties Let us call a matrix W even if its elemen...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

Implicit eigenvalue problems for maximal monotone operators

where T is a maximal monotone multi-valued operator and the operator C satisfies condition (S+) or (S̃+). In a regularization method by the duality operator, we use the degree theories of Kartsatos and Skrypnik upon conditions of C as well as Browder’s degree. There are two cases to consider: One is that C is demicontinuous and bounded with condition (S+); and the other is that C is quasibounded...

متن کامل

Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger

which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...

متن کامل

Eigenvalue Estimates for Random Schrödinger Operators

where γ ≥ 0 for d ≥ 3, γ > 0 for d = 2 and γ ≥ 1/2 for d = 1. The estimate (1.1) is called the classical Lieb-Thirring inequality. One needs to remark, that although for any V ∈ L the eigenvalue sum ∑ j |λj| converges for both V and −V , it follows from our results that converse need not be true. The sum ∑ j |λj| can converge even for potentials that are not functions of the class L . In the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1975

ISSN: 0035-7596

DOI: 10.1216/rmj-1975-5-3-317